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An earlier paper (Nye 1978) discussed the caustics formed by refraction of light in a thin
gravity-free water drop resting on a glass surface. Here the effect of gravity is examined.
In anirregular drop clinging to an inclined glass surface all the elementary catastrophes
of co-dimension up to three are seen, including the hyperbolic umbilic. By suitably con-
trolling the shape of the drop one can produce the higher-order singularities D, (para-
bolic umbilic) and E4 (symbolic umbilic) with their corresponding unfoldings. The
local topology of E4 is accompanied by characteristic global topology signifying the
presence of a higher organizing centre. Recognizing the typical unfolding patterns of
D, and E; makes it possible to understand part of the complex pattern of interaction of
the caustics from a thin irregular drop under gravity.

D, and E4 are to be expected theoretically when a wave is refracted by a surface which
is shaped by the combined effects of surface tension and gravity. The calculated relation
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26 J. F.NYE

between the canonical control parameters of these catastrophes and the physical con-
trols, such as focusing, gives a satisfactory explanation of what is seen. Three examples
show how reactions between umbilic points on a variable surface can be related to higher
order umbilic catastrophes.

1. INTRODUCGTION

When light passes through a water drop of irregular shape resting on a glass surface it focuses to
produce a system of caustic surfaces. In a previous paper (Nye 1978) the water drop lens was
taken to be thin, and small enough in its vertical dimension for gravity to have a negligible effect
on its shape. This is a good approximation for a drop, a few millimetres across, resting on a
horizontal and moderately clean glass plate; but drops of water clinging to an inclined or vertical
surface, such as raindrops on a window pane, are often significantly distorted by gravity. We
study in this paper how gravity modifies the caustics.

Without gravity the caustics produced generically in the three-dimensional image space are
all the elementary catastrophes of appropriate codimension, with the exception of the hyperbolic
umbilic: the fold, cusp, swallowtail and elliptic umbilic. Gravity allows the hyperbolic umbilic
to appear generically.

In spite of the natural irregularities of any drop, the caustic singularities that it produces, the
system of focal surfaces, have a remarkable degree of organisation. The main result of the paper
is to show that part of this organization can be understood by regarding the parabolic umbilic
(D) and the symbolic umbilic (Eg), which -are higher-dimensional catastrophes, as organizing
centres. This can be demonstrated by so manipulating a drop that its surface contains degenerate
umbilic points corresponding to these higher singularities. In a natural drop the degeneracy is
removed and it is found that some of the caustic patterns can be understood as unfoldings of D;
and Eg. In addition we find in the experiments that the local structure of E4 is accompanied by a
characteristic topological feature, part of the global pattern, and this must mean that a still
higher order organising centre is at work. This is probably the double cusp, whose topology is at
present only partially understood (Zeeman 1977, Poston & Stewart 1978).

The main part of the paper confines itself to an approximation which is valid for thin inclined
drops when the surface tension is sufficiently large. When this approximation does not hold, as
for thicker drops under gravity on a horizontal surface, one sees yet another range of caustic
patterns, strikingly different from those shown here and only resolvable under high magnification.
They will be discussed elsewhere; some of them can be shown to be organized by the double
cusp, denoted by Arnol’d (1975, p. 31) as X, or alternatively as X, 4, and by the higher
catastrophe Y3 .

Unmbilic points on the surface of a drop are stable features: they are not destroyed by a small
perturbation. However, they can pass from one class to another and can also undergo reactions
by encounter with other umbilic points. We show by example in §6 how umbilic reactions
on a surface, which are associated with degenerate umbilic points, can be related to umbilic
catastrophes.

2. OBSERVATION

If a distant source of light is viewed through a water drop on a vertical glass surface by placing
the eye very close to the drop, one commonly sees a caustic pattern of folds and cusps like figure 1
(plate 1), the most conspicuous feature being a bright fold, convex outwards, at the top of the
field of view. If the glass substrate is now rotated in its own plane, the caustic pattern does not
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rotate rigidly but continuously reorganizes itself in such a way that the bright convex fold
remains at the top of the field. Thus we are certainly dealing with an effect of gravity, and evi-
dently it is the top part of the drop, which refracts the light downwards, that is responsible. In
thin drops that are not subject to gravity it is known (Berry 1976) that the folds must always be
concave outwards.

A very similar picture is frequently seen if one examines the field very close to the drop with a
low-power microscope. A conspicuous bright fold again appears, often convex outwards, but
this time it comes from the lower part of the drop (figure 24, plate 1). Within the fold can be seen
several diffraction stars, each of which represents an elliptic umbilic focus (Berry, Nye & Wright
1979). These diffraction patterns are indistinguishable from those corresponding to focal sec-
tions, but they are very insensitive to the focusing control of the microscope and so we should not
conclude that the plane of the figure actually passes through the elliptic umbilic foci.

In figure 26 the plane of focus of the microscope has been brought closer to the drop; the star-
shaped diffraction patterns have moved downwards through the fold and each has produced a
cusp. The sequence, which involves piercing, beak-to-beak and swallowtail events concealed by
diffraction, is part of the unfolding of the parabolic umbilic (diagrams 10-16 and 1 of figure 7).
When an elliptic umbilic focus lies exactly on the fold we have the parabolic singularity itself.
The transition shown in figure 24, b is typical in the near field. (Theappearance in figure 25 of the
faint stars outside each cusp shows that closer still to the drop the process shown in figure 6 (d)—
(@) of Nye (1978) will occur.)

In the far field of random drops patterns similar to figure 24 (but inverted) are commonly seen
with the naked eye. In this case the transition from 2a to 25 can be produced by tilting the glass
substrate out of the vertical; it can also be accomplished dynamically by giving the drop a slight
movement (as can be verified when walking in the rain, wearing spectacles and viewing a distant
light; at each pace the elliptic umbilic stars pierce the fold in striking unison).

A further way of producing the transition is to rotate the substrate in its own plane. Then the
whole pattern rotates, but as each cusp approaches the top it retracts by the transition 25 to 2a
and thus allows the bright fold at the top to remain convex and uncusped. Continuing the ro-
tation, and following the diffraction star into which a particular cusp has transformed, one sees it
move first towards the image of the point source (formed by light which has passed outside the
drop) and then away again, always pointing one radial spoke towards the source. Then it
pierces the bright fold again on the other side of the vertical and becomes once more a cusp.
In this way one can follow any given cusp-star through 360° as it rotates with the substrate. In
figure 1 a procession of such diffraction stars can be seen above the direct beam; each one would
become a cusp on rotation.

The broad explanation of this behaviour is as follows. The effect of gravity is to make the drop
pendulous so that its surface slope, relative to the vertical substrate, is small at the top and larger
at the bottom. Accordingly, rays which pass through the peripheral zone of the drop are refracted
weakly at the top and more strongly at the bottom. Now the irregularities in the edge of the drop
produce many umbilic points in the drop surface in this peripheral zone. They are elliptic rather
than hyperbolic because here the rapidly varying local form of the surface is governed primarily
by surface tension rather than by gravity (which gives only a slowly varying pressure). Near the
top edge where the pressure, and hence the total curvature, is least the umbilic points focus far
from the drop and so are seen as diffraction stars in the far field. (The umbilic points near the
bottom edge focus much nearer the drop, as we have seen: a simple consequence of the higher
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pressure.) Thusin the far field the complicated peripheral zone of the drop gives strongly refracted
cusps from the lower part and weakly refracted stars from the upper part, arranged as in figure 1.
In a crude approximation the cusp-star locus is a gradient mapping of the peripheral zone.

Considering the top part of the drop surface and moving radially inwards along a vertical line,
after passing through the peripheral zone a point of inflexion is encountered, where the radial
curvature is zero, and this maps into the central point of the bright convex fold. More generally
the caustic in the far field comes from the line of zero Gaussian curvature on the drop surface
(Berry 19776); in the top half of the drop the main branch of this locus lies inside the peripheral
zone of elliptic umbilics.

As the vertical substrate is rotated in its own plane the edge of the drop remains fixed to it, but
of course the shape of the surface of the drop must change because of gravity. However, the main
effect of rotation, so far as the peripheral zone is concerned, is merely to change the overall slope
of the surface; detailed features in the peripheral curvature pattern evidently rotate, to a good
approximation, with the substrate, and each elliptic umbilic point in this region thus maintains
its position. (Since they all have index -§ (§6) they could not in any case interact and lose their

identities.)
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Ficure 3. Two symmetrical focusing sequences starting near the drop and moving away. (a) starts with a single
cusp and (b) starts with two.

Let us return to the near field of a random drop as seen in the microscope and consider the effect
of changing the plane of focus. Very close to the drop the caustic figure resembles the outline of
the drop itself, but with cusps associated with salients in the outline (Nye 1978). As the plane of
focus recedes the cusps from the bottom of the drop retract, as we have discussed; there follows a
complex sequence of interactions between the various parts of the caustic, and notably between
the many elliptic umbilic patterns as they unfold.

To reduce the complexity and help show up systematic features the following experiment was
done. A piece of opaque tape was stuck to a glass slide, a circular or oval hole was cut in the tape
and a drop of water from a hypodermic syringe was placed to span the hole. Although the peri-
meter of the drop was now fixed, the drop shape could be varied by tilting the slide, by rotating it
in its own plane, by putting in more water, or by allowing the drop to evaporate slowly. The slide,
placed vertically, was illuminated with a horizontal, broadened laser beam and the region just
beyond the water drop lens was viewed with a microscope.

With this arrangement the same features are seen as have already been described, cusps being
produced from irregularities in the hole (the result of imperfect cutting), but now, as the plane of
focus recedes, two systematic modes of unfolding can be distinguished, both involving the para-
bolic umbilic. (a) If the drop is rotated so that the caustic close to its plane has a cusp at the
bottom, the focusing sequence (figure 34) goes near a parabolic umbilic (second diagram, as
already discussed) and then through a hyperbolic umbilic. The near-parabolic umbilic can be
one of many in the field, but there is only one visible hyperbolic umbilic and it dominates the
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field (figurc 4a—d, plate 2). It is always at or near the orientation shown and it contrives to
maintain this attitude cven when the hole is rotated. It persists into the far ficld where it appears,
partially unfolded, as a conspicuous feature placed centrally at the bottom of the field (the naked
eyeseesitin the virtual field at the top; the outer fold is the usual prominent one, convex outwards,
and the cusp fits in below it). () If the drop is rotated so that two cusps lie symmetrically at the
bottom of the ficld, the focusing scquence (figure 34) goes near to two parabolic umbilics (second
diagram) followed by the mutual piercing of two curvilinear triangles, a beak-to-beak cvent, a
butterfly and a hyperbolic umbilic, which then dominates the whole field. Since it is essentially
invariant to rotation of the hole it is the ¢ same’ hyperbolic umbilic as was seen in (a). (Figure
14 a, b and d-f, made not with a round hole but with onc having a flat side at the bottom, shows the
first part of such a scquence.)

Thus the two diffcrent symmetrical starting configurations produce the same final pattern, the
single hyperbolic umbilic. We shall see (§4) that the first characteristic sequence is to be associated
with the parabolic umbilic (D;) and the sccond (§5) with the symbolic umbilic (Eg), but that
global topology is involved as well as the local unfolding of these two singularitics. We have
remarked that the natural irregularities in the cdge of the drop produce many umbilic points in
the drop surface close to the edge. However, nearer the centre of the drop the cffect of the bound-
ary irrcgularities is damped out and the caustics from this area, where gravity is important and
which gives the single hyperbolic umbilic focus, behave much more systematically.

Having once recognized this systematic behaviour with round and oval holes it was possible
to go back to drops of uncontrolled outlinc and sce that at least some of the apparent complexity
of the unfoldings could be understood in terms of the two basic sequences (a) and (b).

3. THEORY

What sort of umbilic foci would we expect theorctically? Consider a water drop of general
outline under the combined forces of surface tension and gravity, resting on an inclined plane
glass plate (figure 5a, b). With origin in the surface of the drop take rectangular cartesian axcs
with OZ as the inward normal to the surface, Oy horizontal and OX (tangential to the drop)
positive downwards. A beam of parallel light is incident on the lower surface of the drop in such a
direction that, after refraction through the glass substrate, the rays are parallel to OZ. Thus,
within the drop, the incident wavefronts are planc and parallel to the upper surface of the drop at
the origin, and we can now forget about the lower surface of the drop and the substrate. We wish
to calculate the shape of the wavefronts after refraction at the upper surfacc.

Within the drop the excess pressure p satisfics

gradp = pg, g = (gsin0,0,gcos0),
where gis the gravitational acceleration, @ is the angle of Ox below the horizontal (0 < # < n)and
p is the density. Therefore, at the drop surface
P = po+pg(sin0+hcos0),
where f, is the excess pressure in the water at O, and A(%, i) is the perpendicular distance of the
surface below the (%,#7) planc. In the approximation |grad/| < 1 the surface tension 7 then
imposes the condition i
®h %k p,  pg

—a}—z-l-a—y_—é=—7=.+—f(.?sin0+ﬁcos()). (1)
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We shall study the regime where the last term in this equation is negligible. Physically this
corresponds to having the surface tension sufficiently large: if py, p, g and 6 are held fixed while 7"
is increased, eventually % is proportional to 71, and so the last term becomes proportional to
T-2 and may be neglected. Keeping p, fixed while T increases means that the curvature V2
decreases and so the analysis applies to ¢ thin’ drops. (Notice that what might seem the more obvious
procedure of allowing g to become small gets rid of both the ¥ and the 4 terms together and we
lose all effect of gravity.) The wavefront just above the drop has the form

J= -1k, (2)

where f(x,y) is its perpendicular height above the (¥,7) plane, and # is the refractive index.

(a) (o)

F1cure 5. (a) Coordinate system. (b) %(%, 7) defines the drop surface (full curve); f(#, 7) defines the wavefront
(broken curve).

Inserting thisin (1), defining a length [, = {7/(n — 1) pgsin 6}} and transforming to dimensionless
coordinates ¥, y, z, dimensionless wavefront height f; and dimensionless pressure excess p, given by

X=lyx, §=by, z=lz, f=1Uf b= pglsin0.p, (3)
we obtain the governing differential equation
0¥ 02

oY (4)

ax2+'a_y§ =ﬁ0+x.

Note that, since & = {l,/(n— 1)} f, f(%,y) can be thought of equally well as giving the shape of the
wavefront f or of the drop itself 4.
The general solution of (4) with O an umbilic point is

S=1bo(x2+y%) + §xy* 4+ F(x,y), (5)

the complementary function F(x, ) being harmonic and of order 3 or higher. For the present we
restrict attention to solutions symmetric in y. Then the solution near O is the power series

S = 1po(x* +97) +dax® + 5(1 — o) xy® + g (x* — 627> +4*) + O(5), (6)

where « and ¢ are arbitrary constants. Whether O is elliptic or hyperbolic depends on the cubic
terms and specifically (Berry & Hannay 1977) on the sign of the discriminant

D = da(u—1)? D > Oelliptic, }
= o — ;

D < 0hyperbolic. ™
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Thus there are two critical values of &, 0 and 1, where the umbilic point changes its character
(figure 6). We can guess, and will shortly prove, that a = 0 represents a parabolic umbilic
(D;), but @ = 1is a triple root and so gives warning that it may give something more singular. We
shall see that this root represents the symbolic umbilic (Eg). To study the limit 6 — 0 one keeps
sin 0 out of the scaling so that (4) becomes

V3 = p,+xsin 0,

and the factor (1—ca) in (6) becomes (sinf—a). Thus the roots are now at & = 0 and sin6.
As 0 — 0 the hyperbolic region in figure 6 disappears: horizontal (non-degenerate) umbilic points
are always elliptic.

The wavefront must now be related to a generating function ¢. For a general point in the image

N\ rd
N__— 1 Z

E —pl¢———— H ——>l¢—— E

Ficure 6. The catastrophe discriminant D as a function of the parameter a which governs the drop shape.

space beyond the drop we use coordinates (X,Y,Z) = (x,y, —z). If R = (X, Y) and r = (x,y),
the (non-dimensional) distance / between a general point (r, f) on the wavefront and a general
point P = (R, Z) in the image space beyond it is given by

B=(R—r)2+(Z~f(r))2 (8)

To define ¢ discard the part of /2 that does not depend on r and divide the remainder by —2Z;
thus define

$(r; R,2) = fir) gt TR - L ()

Keeping P = (R, Z) fixed and varying r the condition for ¢ to be stationary, V, ¢ = 0, implies
VA(r) = (r=R)/(Z~f). (10)

This equation is satisfied exactly on a normal from P to the wavefront, that is, on a ray through P.
Thus the stationary condition on ¢ defined by (9) generates the rays. The rays provide a mapping
from the three-dimensional space beyond the wavefront, the control space (X, ¥, Z), into the
two-dimensional space (x, y), the state space, of the wavefront itself. The caustics we are studying
are the envelopes of the rays, their focal surfaces; they constitute the singularities in control space
of a gradient mapping. Mathematically they are catastrophes (Thom 1975, Berry 1976, Poston
& Stewart 1978, Nye 1978).

If we use equation (9) for the generating function there are no approximations. However, for
most of the work we shall use the simpler form

B(r;R,2) = f(r) - D+ TF (11)
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constructed by omitting the term in 2, which generates

Vf(r) = (r—R)/Z. (12)
Equation (12) describes the rays within the approximation f < Z; we shall discuss the effect of
this approximation in more detail later.

In this paper we are mainly concerned with solutions of equation (4) in the form of expansions
about umbilic points. We do not try to fit the solutions to the boundary conditions on the edge of
the drop, except for one example, due to Dr M. V. Berry, which we now describe. This is the
following exact solution of (4) for a drop with a circular perimeter:

S = 1po(® + %) +§x(x* +y7 - £%). (13)
On the circle #% + y2 = k2 the height of the wavefront f takes the constant value £p, 4% Thus there
exists a plane z = constant which cuts the drop in a circle, as required.

The surface described by (13) has a non-zero slope at O, and O is umbilic. Thus although the
umbilic focus is off-axis the umbilic point on the surface is at the centre of the drop. The cubic
terms correspond to a = £ in equation (6) and therefore the umbilic point is hyperbolic. Without
gravity the drop would be a spherical cap and the caustic would be an isolated point, which is
structurally unstable. Gravity is enough to remove the indeterminacy and produce a structurally
stable hyperbolic umbilic focus.

To examine this focus first insert the wavefront (13) into equation (11) to obtain ¢. Move the
origin in control space to the focus (}£2/p,, 0, 2/p,), defining the new control variables

Xy = X—{R/py, Zy=Z-2/py;
then, dropping nonlinear terms in the control variables, we have for the generating function
¢ = §x(P+9%) + 3P 21 (2 +97) + 3o (x Xy +yY).

We will consider the plane through the focus Z; = 0. The critical points of ¢, given by V, ¢ = 0,
provide the ray mapping
4py X, = — 3x* “‘.7/2:1

200 Y = —xy. J (14

The set of degenerate critical points of ¢, whose locus in (X,, Y) is the caustic, is obtained
by imposing the further condition that the Hessian determinant of ¢ with respect to the state
variables (x,y), namely ¢, ¢, — @2, be zero. We therefore have

¥ =y? or y=+t.3%,

which, when combined with (14), gives
X; = +4/37%,

DESCRIPTION OF PLATE 1

Ficure 1. Caustic figure from a water drop on a vertical surface as it would be seen by eye in the far field. (The
concentric diffraction rings are due to imperfections in the optical system.)

Ficure 2. Caustics formed by the lower part of a drop in the near field (inversion by the microscope has been
removed). (a) and (b) are from an irregular drop; (¢) and (d) are from a drop in an imperfect circular hole.
(a) is further from the drop than (b). (¢) is further from the drop than (d). The transitions are organized by the
parabolic umbilic.
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Ticure 4. (a)-(c) Sequence through a hyperbolic umbilic focus, and (d) the singular section for a different drop.
The edge of the drop was fixed by a circular hole, 5.5 mm in diameter, held vertically.
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Trcure 8. Light caustics near a parabolic umbilic focus. (a)—(¢) correspond to the left hand half of figure 7. (f) isa
section almost through the singularity itself.
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Ficure 14. (a)-(b) and (d)-(f) is a focusing sequence moving away {rom the drop showing at (5) two simultaneous
parabolic umbilics as part of the non-local unfolding of Eq. (¢) is from another drop and shows lips unfolding
from (b).
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Figure 15. Unfolding of E; with ¢ # 0.
Ficure 17. Unfoldings of Eg disguised by the proximity of D; loci.
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with the restriction X, < 0 (since , is positive). Thus the caustic in the focal plane is a V-shape
with arms at 60°. ‘

This model of the circular drop provides the explanation for the observations in § 2 where drops
in imperfect oval and circular holes produced a conspicuous hyperbolic umbilic focus. The arms
of the V in figures 45 and d do indeed come together at an angle not significantly different from
60°. A very good example appears in fig. 8 of the paper by Tanner (1978); his optical geometry
is different from ours but equivalent.

4. THE PARABoOLIC UMBILIC (D)

To study the parabolic umbilic we use the wavefront (6) and obtain ¢ from equation (11). Since
the umbilic focus is at (0, 0, 2/p,), define the focusing control variable as before by Z, = Z—2/p,.
We need keep only terms up to O(4) in f. Then, keeping only the linear terms in the control
variables, we have for the generating function

¢ = Fay® + (32 — Jay®) + g (x1 — 62%% +y*) + 505 21 (4 +9%) + §po(Xx + Yy). (15)

A standard form for the parabolic umbilic and its universal unfolding is (Poston & Stewart
1978, p. 122; Thom 1975, p. 84)

+ (2% + 1yt + "2+ wy'? —ux’ —vy’), (16)

where x’,y' are state variables and ¢, w, 4, v are controls. This suggests that the parameters ¢ and
o governing the shape of the wavefront should be treated differently. Whereas ¢ is a non-zero
constant, & will now be regarded as a control variable and will be thought of as small.
To bring (15) into the standard form (16) we look first at the germ, obtained by setting
a=X=Y=Z = 0,namely
dxy? + q(xt — 6x%y2 + y4), (17)
and use the rules of equivalence. #%2 may be neglected in comparison with xy2. Then, introducing

the new state variable x,, where
Xy = x+2qy %
consider the expression

o,y + g = Ly + gyt + gx* + termsin xy?, %yt wyS, 48,

Since the terms in the last group are all negligible compared with xy2 or 4, the germ (17) reduces
to x, 42+ gx} which, with appropriate scaling factors, becomes the standard form

+ (' +1y'). (18)

The lower sign results if ¢ < 0, in which case we reverse the sign of x;. Thus we have shown that
(17) and (18) are equivalent.
With state variables x,, 7, (15) now takes the form

¢ = 3, 2+ gt +a(dad + gyt +4%0) + E PR Zy (2] + 42 + 4¢%%) + § oo X (% — 2qy®) + 590 Yy, (19)

where we have dropped terms in ax}y?, ax, y*, ax,y? Z;x,y? which are small compared with
x, 4% in the germ. The transformation

%y = X%y + A+ By?+ Cy*
with A=73alq, B=2qa+ipiZ,9), C=3¢«

5 Vol. 292. A.
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removes the terms in axf, ay* and ay®; then, dropping terms in x§4? and 3y, and also terms
quadratic or higher in the control variables X, Y, Z,, o leaves

¢ =307+ ¢ + M Zid + (—5/q+ §8 21— o 9X) P+ S po Xxa + 3P0 Y. (20)
Comparing this with the standard form (16) we can now relate the physical controls X, Y, Z;, o
to the standard controls ¢, w, u, v (table 1). Thus, while u, v, w are simply proportional to ¥, X and
Z,, tis a linear combination of @, Z; and X.

TABLE 1. VARIABLES FOR THE PARABOLIC UMBILIC (D)

Thom
(1975) - this experiment
X 2-1Q-1y
y +25Q2x,
J + 28Q2(—dsa/q + 40} 21— poaX)
w £270Q- Z,
u F21Qp, Y
v —2-4Q2, X

Q = (+¢)¥%, and where there is a choice the upper sign is for ¢ positive and the lower for ¢ negative.

Before discussing these connections any further let us review the status of the physical controls.
With a given drop (X, Y, Z,) represents the variable observation point; on the other hand g, «
and ¢ depend on the shape of the drop. We can think of'it like this. A drop is created, symmetrical
in y, and the origin is taken at an umbilic point. An umbilic focus will then appearat X =Y =
Z, = 0. It will be elliptic or hyperbolic and it will unfold in the observation plane (X, Y) as the
focusing control Z; is changed. p,, « and ¢ will be non-zero. Now, by alteration of one external
parameter, the shape of the drop is slightly changed, but keeping it symmetrical in y and not
changing the position or the orientation of the umbilic point (the umbilic point, being structurally
stable, will not disappear). ,, « and ¢ will now have different values, and the umbilic focus will
be at a different Z.If the external parameter is correctly chosen we may be able to arrange that «
passes through zero. Then the umbilic point on the drop will change from elliptic to hyperbolic,
or vice versa, and at a = 0 it will be parabolic.

The theoretical argument we have used involves not only the cubic but also the quartic terms
in the expansion of the wave surface about the umbilic point. This raises an issue that needs
further discussion, because the original differential equation is only approximate, and therefore
one may legitimately ask whether the higher-order terms in its solutions have any physical
meaning.

There are three relevant approximations, all connected with paraxiality: (a) use of the expres-
sion V24 in equation (1) for the curvature of the drop; (b) equation (2) which connects the form
of the wavefront with that of the drop effectively linearizes Snell’s law; (¢) the generating function
(11) with the omission of the term } f2/Z gives the rays only approximately (equation (12)). For
each of these approximations the expansion about the umbilic point is correct up to cubic terms
only. We argue as follows. Equation (5) is an exact solution of equation (4). Therefore our
analysis of the caustics is correct for an imaginary system whose wavefronts exactly obey the
governing differential equation (4) and whose rays exactly obey equation (12). The real system
is slightly different, but, because the singularities we are concerned with, the catastrophes, are
structurally stable in the space of the available control parameters (four for the parabolic um-
bilic), the difference between the real and the imaginary system will merely move them in control
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space; it will not destroy them or change their topology. More specifically we assume that the
difference from the calculated form does not move a singularity so far that it interacts with
another. The structural stability of the singularities is essential to the result.

Lip Swallow-tail
[ ]
1
2 16
A
3 15
. Beak
Piercing 4 14 to
beak
5 13
Hypf?l:bOliC Z 6 12 Piercing
umbilics
7 11

\Y

Double Elliptic
piercing umbilics

Ficure 7. Unfoldings of the parabolic umbilic (D;). Reproduced from Structural Stability and Morphogenesis, 1975,
written by René Thom (translated from the first French edition by D. H. Fowler), with the permission of the
publishers, Addison-Wesley, Advanced Book Program, Reading, Mass., U.S.A.

4.1 Observation of Dy

Figure 7, taken from Thom’s book (1975, p. 86), illustrates the universal unfolding of the para-
bolic umbilic (D) as a clock diagram. For points on a unit circle in the (w, ) plane it shows the
corresponding sections (u,v). To realise these unfoldings physically the hole-in-tape method was
used. The main controls on the shape of the drop were changing the shape of the hole and charg-
ing up the drop with more water; changing the tilt of the whole apparatus with the glass substrate
near vertical made only a small difference. A V-shaped hole was chosen so that close to the drop
there was a single cusp at the bottom of the field. Figures 8a-¢ (plate 3) show the effect of moving
the plane of focus away from the drop (some evaporation occurred between ¢ and d), b is the lips
event; d is the hyperbolic umbilic; f; from a different drop, is a section through the parabolic
umbilic singularity itself. The photographs of figure 8 correspond to the left hand half of figure 7.

The right hand half of the clock diagram provides sequences whose details are masked in
these experiments by diffraction. The transition from figure 25 to 2a, where a cusp retracts to
leave a smooth fold and a singular section of an elliptic umbilic, is one example. Figures 2¢, d,
two members of a focusing sequence, are another. The three-rayed diffraction pattern seen in

5-2
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figure 2¢ above the fold represents a non-singular section of the elliptic umbilic (Berry, Nye &
Wright 1979) (diagram 9 or 11 in figure 7). Figure 2dis closer still to the parabolic umbilic centre
and the diffraction pattern can be seen as intermediate between those of figure 2¢ and that of
figure 8f; in fact the hat shaped central maximum gives a good way of recognizing the parabolic
umbilic.

The detailed relation of the photographs to the theoretical sections is more complicated than
might at first be thought from the fairly simple connection between X, Y, Z;, « and u, v, ¢, w
shown in table 1. Note, for example, that although X and Z, are simply proportional to v and w
the X and Z, axes are inclined to the » and w axes. A typical photograph represents a plane
Z, = constant, o = constant. In the space (u,v,f,w) this is not quite the plane ¢ = constant,
w = constant shown by a typical member of the clock diagram. Note also that a change of focus
Z, alters not only w but also ¢. Increasing Z, is observed to correspond to decreasing w; therefore,
the lower sign in table 1 applies and ¢ must be negative. Hence in a (£, w) projection, such as
figure 7 (central diagram), increasing Z, carries a point from upper right to lower left. Thus in
figure 18 note that a line near o = 0 passes first near the parabolic umbilic centre and then
cuts the hyperbolic umbilic locus 6, which is consistent with the sequence of figure 3a.

5. Tue symBoric uMBILIC (Eg)

We now examine the second critical value of « seen in figure 6, o« = 1. Take for the wavefront
f(x,y) the same form (6) as before, but because we wish to be able to break the symmetry in y we
add the lowest order term that will do this, exy, where € is a constant. With the new parameter y
defined as 1 — o the wavefront, up to quartic terms, is then

S = 3po(x®+ %) +exy +§(1—y) 63 + Fyxy? + q(x — 6222 + ). (21)

Notice that unless € = 0 the origin is no longer an umbilic point. The generating function ¢
defined by (11) becomes

= gt — 6 hy) ey 4y (b= 1) H A Z 0 +y) + bt By, (22)
A standard form for the symbolic umbilic (E;) and its universal unfolding is (Poston & Stewart
1978, p. 122; Callahan 1977, p. 9)

+ (xl:} +y’4_ex’y'2_dy’2_cx'yl——-by’—dxl), (23)

with &', ¥’ as state variables and g, b, ¢, d, ¢ as controls. This suggests that of the coefficients p,, ¢, €, y
appearing in the wavefront, p, and ¢ should be thought of as constants, with ¢ and vy as small
parameters playing the part of controls.

In the germ 3 4 g(xt — 6x2y2 + y4) (24)
x*is small compared with #3. Then introduction of the new state variable
¥, = x—12qy?
and neglecting #, ¥, 13 y* and y® in comparison with y* removes the term in x%? to leave
3 + gyt (25)
which with appropriate scaling factors is the germ of Eg,

+ (0 +y"). | (26)
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(If ¢ is negative we change the sign of x, and obtain the lower sign.) Thus (24) is equivalent to
(26).

Coming to the unfolding part, (22) now has the form

¢ =¥+ gyt Fexiy+ 3y + 305 921) %47+ 12qey + {3 21}
+ (508 Z1+ 6p0 g X) y? + 5 po Xty + 35 Yy,

where terms in ya, yy4, yx; 44, vy®, Z, y* have been omitted as negligible compared with those in
the germ, and yx?y? as negligible compared with yx, y2.

To remove the terms in x? and y? respectively put

Xo =X+ 2y
and ¥ =Y+ 3e,
neglecting terms quadratic or higher in the controls, to give
¢ = dxd+qyi+ (3y + 368 4Z1) 253 + (403 2o+ 600 ¢ X) 41+ exa 91+ 5 0o Yyu + 9o Xxa. (27)

This is now in the standard form (23) and the physical controls X, Y, Z,, v, ¢ may therefore be
related to a, b, ¢, d, ¢ as listed in table 2.

TABLE 2. VARIABLES FOR THE SYMBOLIC UMBILIC (Eg)

Callahan
(1977) this experiment

x’ + 6‘7&x2
y Q%
a -3. 6§[)0 X
b F1Q, ¥
¢ - G%Q‘Ze
d F Q4 (305 21+ 6po g X)
e —63Q-4(Jy + 3p3¢Zy)

Q= (% q)é and where there is a choice the upper sign is for g positive and the lower for ¢ negative.

If ¢ is kept zero the origin is always umbilic. As with the parabolic umbilic, starting with a drop
symmetrical in y, we have to imagine a single external parameter changed in such a way that the
position and orientation of the umbilic point is unaltered, the drop shape remaining symmetrical
in y throughout. p,, ¢ and y will change, and if we can make the range of variation such that it
includes y = 0 the umbilic point at the origin will pass from hyperbolic to elliptic via Eq. We
discuss later (§6) what this means in terms of the drop surface. An essential difference from the
parabolic umbilic is the extra control variable € which corresponds to breaking the symmetry in
y. Just as with the parabolic umbilic, we appeal to the structural stability of Eg to establish the
essential correctness of the quartic terms in the expansion of the wavefront.

5.1. Observation and discussion of Eg

As table 2 shows, the canonical pattern in the space @, b, ¢, d, e is distorted in the physical
control space. Crudely speaking, however, (a,b) represents the plane of observation (X,Y),
d is mainly influenced by focusing (Z,;), while ¢ is mainly governed by charging the drop and
by changing the shape and size of its symmetrical boundary. The control ¢ which breaks the
symmetry about the vertical plane is conveniently handled by rotating the microscope stage,
and hence the drop, in its own plane.

5-3
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Figure 9 shows the theoretical sections in the (a, b) plane that result from varying d and ¢ while
keeping ¢ = 0; the figure is taken from Callahan (1977), but the extra folds shown by broken lines
have been added on the basis of the present observations. It will be seen that at the T-shaped most
singular section, at d = ¢ = 0, these extra folds do not pass through the origin, the T-junction, and
so they are not an essential part of the unfolding of Eg, but rather part of the global pattern in
which it happens to be embedded in these experiments. As one moves along the positive d axis
from the origin (figure 10) the extra folds (often rather dim) cause the horizontal arms of
the central T-shape to disappear; unless this is recognized the frequent absence of these arms,
as in figure 10d, can be puzzling. The extra folds naturally play a part, not essential to Eg but
potentially confusing, in all the other observed unfolding patterns.
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Ficure 9. Unfoldings of the symbolic umbilic (Eg), based on Callahan (1977). Each diagram is an (a, b) section
corresponding to ¢ = 0 and the (d, ¢) value indicated in the centre.

(a) (d)

Ficure 10. Global modification to E; caused by extra folds (broken lines). Patterns (a)—(d) correspond to moving
along the d axis from the origin.

The photographs in figure 12 (plate 4) correspond with the diagrams in figure 9 with ¢ = 0.
They were obtained by the same technique as for D, except that a hole shape was chosen that
would give at the bottom of the field close to the drop two cusps symmetrically placed (figure 35)
rather than a single central one. A symmetrical hole about 2 mm wide with a flat side at the
bottom rather than a corner is essentially what is needed. One has to be sure that the microscope
aperture is not cutting off any high-angle rays; this often dictates a high-power objective, and for
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the same reason it helps to have easy control of the angle of the incident beam. Figure 13a—f
(plate 5) correspond to members of the clock diagram in figure 9 with ¢ # 0. In figure 11
(plate 4) we are in the top left quadrant of the (4, ¢) projection and very close to the origin.
Rotating the microscope stage to make ¢ non-zero produces patterns such as figure 15 (plate 8)
which can be seen as an unsymmetrical unfolding of a ‘triple-folded handkerchief” (fold twice
and then fold back the top two layers to make a third fold parallel to the second). In this
example a hyperbolic umbilic appears on the left but not on the right.

(a) (b)
Ficure 16. The umbilic locus for Eg: (a) after Callahan (1977%); (b) with a non-local crossing of the Dy locus.
E, elliptic; H, hyperbolic.

5.2. Global topology near Eg

The observations described accord with what is already known about the unfoldings of D; and
E¢. But the extra folds seen near E; are a new feature showing that there is also systematic global
topology in its neighbourhood to be explored. In figure 35, which is a typical focusing sequence
obtained with a symmetrical hole, one appears in the second diagram to pass very close to two
parabolic umbilics simultaneously. Thisis surprising because with Eg, as figure 9 shows, there is no
combination of d and ¢ with ¢ = 0 which can give two parabolic umbilics. Nevertheless, by care-
fully changing the shape of a drop by adding more water, a droplet at a time, it was verified that
one could indeed obtain two parabolic umbilic foci in the field at the same time, symmetrically
placed (figure 145). Figure 14¢ is from another drop and shows how 144 can be unfolded to give
lips. The focusing sequence through figure 14 4 is shown as figure 144, b, d-g (plates 6 and 7). One
does not pass exactly through E¢ but through the lower right part of the clock diagram in figure 9.
However, we know that with a slight change of y as well as Z, we could have reached E; itself.

To explain this apparently paradoxical behaviour consider the umbilic locus in the space of
parameters ¢, d, e, which, as shown by Callahan (1977), has the form of a Whitney umbrella
(figure 164). If (¢, d, ¢) lies on this surface, there will be an umbilic focus in the observation plane
(@, b). The surface is divided by the parabolic umbilic locus Dy, so that points above represent
elliptic umbilics and points below represent hyperbolic umbilics. Notice that along the ¢ axis in
the positive direction one has a hyperbolic changing to an elliptic umbilic, while along the d axis
one has at first no umbilics and then two hyperbolic umbilics (since the two sheets cross). But
with ¢ = 0 one never encounters the D; locus, except at the origin itself. Therefore, with this
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topology, there can be no non-zero setting of d and ¢, with ¢ = 0, that will give D;. Since two Dj’s
are observed at the same d, ¢ setting (in the physical controls they differ only in Y), the Dy locus
must cross itself at some point in the d, ¢ plane: this can only be on the line where the two umbilic
sheets cross. We have therefore conjectured that the global topology is as figure 164; however,
Dr J. Callahan (personal communication) points out that the connections shown as dotted lines
are probably not correct. The question is still under discussion. In any case the behaviour in
figures 3b and 14 is so systematic that it must result from a higher-order organizing centre,
probably the double cusp, of which Eg4 is a partial unfolding.

Figure 14 shows that the extra folds, shown broken in the various diagrams, originate in the two
Dy’s. We can now interpret patterns like figures 17a—c. (plate 8). As a drop is tilted, and gravity is
switched on, so to speak, one can watch the lips in figure 174 appearing. The pattern is like
figure 14¢. We are on the d axis in figure 174, and near the d axis in figure 17¢ (compare figure
104 to d), but the Eg unfolding is disguised by the proximity of the two D, loci. Such patterns are
in fact the rule rather than the exception; it can be hard to load the drop sufficiently full of water
to reach E; itself without it breaking away.

6. UMBILIC REACTIONS ON THE SURFAGE

Both in D and Eg three of the control parameters in the unfolding are the three dimensions of
the physical space in which the optical focus is formed, while the remainder control the shape of
the surface of the drop. What happens to the umbilic point on the drop itself at the origin as these
shape parameters are changed?

For Dj, where there is only one parameter of evolution (which could be time), the answer is
simple. We use the classification of umbilic points by Berry & Hannay (1977). As a increases
through zero the umbilic point at O changes from elliptic to hyperbolic, its index (the number of
revolutions of the principal axes of curvature in a circuit around O) remains — 4, and the number
of straight lines of curvature passing through it remains 3. Figure 18 shows the umbilic locus
projected on to the (#, w) plane. A line of constant a (constant drop shape) has positive slope near
the origin; when « is small and negative it intersects the elliptic branch (¢ > 0) near the origin,
and when « is small and positive it intersects the hyperbolic branch (¢ < 0). However, as «
increases still further there is the possibility of a tangency between the line of constant o and the
umbilic locus, corresponding to the mutual annihilation of two hyperbolic umbilics of opposite
index, + 4. Thisis beyond the range of small &, and thus represent global topology of Dj.

It is interesting to see that the tangency is with the hyperbolic rather than the elliptic branch;
since all elliptic umbilics have index —3% two elliptic umbilics cannot annihilate. This is an
example of a restriction on the orientation of the singular set of a catastrophe in control space.
The physical space (X, Y, Z,) is a three-dimensional section (o = 0) through the four-dimensional
singularity, but only certain three-dimensional sections are allowed.

To examine the event represented by the tangency first consider the form of the wavefront, or
drop, given by equation (6). As we have seen, o = 0 gives D; and o = 1 gives E;. Noting that the
index discriminant (Berry & Hannay 1977) is zero for & = 4 or 1, we put & = %. But fgiven by (6)
is always umbilic at the origin, and so to obtain an annihilation event we must perturb the
quadratic terms, while still satisfying the differential equation (4). Therefore we write

S= (Gpot+e) ¥+ (Rpo— 1) ¥* +49° + 1xy® + g (v — 6x%% + %) + O(5). (28)
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This form does what we need. T'wo hyperbolic umbilic points at (+4/(—4¢;, ¢71), 0) coalesce and
annihilate at O as e, increases through zero. Figure 19 sketches the pattern of directions of
principal curvature on the surface. As €, decreases we see, in the Berry—Hannay terminology, the
twin birth of a star and a monstar. To obtain these patterns ¢gx and ¢y must be kept small; the
cubic terms must dominate the quartic terms. (Equation (28) also contains, as part of its global
pattern for e; = 0, two extra umbilics, symmetrically placed at (J5¢7%, +5¢~!) and parabolic to
the first approximation.)
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Ficure 18. The full curve is the umbilic locus for the parabolic umbilic. The left hand branch gives hyperbolic
umbilic points and the right hand branch gives elliptic umbilic points. The broken curves are lines of constant
surface shape (constant @); changing the plane of focus of the microscope for a fixed drop corresponds to
moving along one of these curves.

€,<0 €,=0 €,>0

Ficure 19. Sketch of pattern of directions of principal curvature for the mutual annihilation of two hyperbolic
umbilic points on a surface. The slope ¥ of the curves is given by

tan 29/ = y/[4e, +244(x* —y)].

Turning now to E¢ (o = 1), there are two shape parameters y = 1 —a, and € to consider. Let
us preserve symmetry by keeping ¢ = 0. First note from equation (21) that, as y is changed
through zero, O on the surface remains an umbilic point throughout. But we see from figure 9 that
at certain settings of ¢ and d (¢ = 0) there are two hyperbolic umbilic foci, symmetrically placed,
and so at least two hyperbolic umbilic points symmetrically placed on the surface, in addition
to the umbilic point at O. We do not see all three umbilic foci at once because they focus at
different levels, but all the umbilic points are simultaneously present on the surface. In table 2 ¢ s
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positive (because increasing Z, is observed to correspond to decreasing d). So, omitting positive

proportionality constants,
Vv=—e+d—a.

For umbilics on the 4 and ¢ axes ¢ = 0 (Callahan 1977, p. 21). The lines of constant y (constant
drop shape) therefore run as in figure 204, which is a section of figure 164. As vy increases one
elliptic umbilic point changes into three hyperbolic points. The index of the elliptic point must
be —3%; so by conservation of index and by symmetry the indices must be arranged as in figure
20b. As v increases (figure 21) a single elliptic star splits into a central lemon flanked by two
hyperbolic stars. (Equation (21), with y = € = 0, contains an umbilic point at (—g%¢™,0) in
addition to the one at the origin, but this is part of the global pattern; it could correspond to the
hyperbolic umbilic caustic seen, partially unfolded, in the far field.) It is noteworthy that all
three discriminants, catastrophe, index and line pattern, are zero at Eg itself.
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F1cure 20. (a) The umbilic locus for Eq in the (d, ¢) plane is the ¢ axis (elliptic for ¢ > 0, hyperbolic for ¢ < 0) and
the positive d axis (two hyperbolic umbilics). The broken curves are lines of constant drop shape (constant y);
changing the plane of focus carries a point along one of these curves. As 7y increases a single elliptic umbilic
point changes into three hyperbolic umbilic points, the indices being arranged as shown in (5).

Ficure 21. Sketch of pattern of directions of principal curvature for the E; umbilic reaction (symmetric case,
¢ = 0). The slope, ¥, of the curves is given by tan 2y = 2y(y — 24qx)/ (x — 24qy*).

These examples suggest the following conclusions. Generically, a surface will contain umbilic
points. As a surface evolves with time two events involving umbilic points will occur generically:
the parabolic umbilic and the creation or destruction of a pair of hyperbolic umbilics. If the
evolving surface is subject to one constraint (for example, symmetry about a line) the E; umbilic
reaction will occur generically. In a similar way each higher-order umbilic catastrophe corres-
ponds to a family of umbilic reactions on an evolving surface. An alternative way of viewing
such reactions is suggested in the appendix.
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7. FURTHER DISCUSSION
7.1. General method

Our theoretical treatment has depended mainly on a power series expansion of the water
surface or wave surface in the immediate neighbourhood of an umbilic point. Except for the
circular drop we have not considered the theoretical connection between the canonical control
parameters of D, and E4 and the real physical controls that change the shape of the drop (aper-
ture size and shape, amount of water and tilt of the glass substrate) because this would have
entailed finding the complete shape of the drop surface under the given physical conditions. We
avoided such calculations by changing the physical controls experimentally in an intuitive way,
so altering the shape parameters o or (7, €) which are effective in the immediate neighbourhood
of the umbilic point, and we then connected o, y and e theoretically with the canonical controls.

The application of catastrophe theory lies in first establishing, by using the rules of equivalence,
which germs we are dealing with; this enables us to deduce what controls are needed for com-
plete unfolding, and then the theoretical notion of structural stability enables us to understand
why what is seen optically is physically stable. Without that theoretical notion the stability of the
observed patterns would be a mystery.

7.2 Diffraction

We have emphasized the geometrical optics of the observed caustic patterns, but in some of the
patterns (notably those of Eq for ¢ positive) diffraction effects are very conspicuous. Berry (1976)
has pointed out how each catastrophe has its own characteristic diffraction pattern; these are
understood so far for the fold (Airy 1838), cusp (Pearcey 1946), elliptic umbilic (Trinkaus &
Drepper 1977, Berry, Nye & Wright 1979) and to some extent for the swallowtail (Wright 1977)
and the hyperbolic umbilic (F. J. Wright, private communication). This paper shows singular
sections for the hyperbolic umbilic (rhombuses, figure 44, d), the parabolic umbilic (hexagons,
figure 8f) and Eg4 (straight fringes, figure 125).

I should like to thank Dr M. V. Berry and Dr J. Callahan, who have both kindly read a draft
of this paper and commented most helpfully on it.

APPENDIX, UMBILIC REAGTIONS

Let a smooth surface of small slope be represented by f(x, y), its height above the (x,y) plane.
The condition for a point to be umbilic is f,, = f,, and f;,, = 0, where subscripts denote differen-
tiation. So in the mapping

& (x’ y) > (f;,:c _f;/zpfwy)

umbilic points are inverse images of the origin O’ in the target space. Since this is a mapping of the
plane to the plane the only singularities that will occur generically are the fold and the cusp
(Whitney 1955). If now the surface is allowed to evolve with time, when a fold of g passes through
O’ the number of inverse images of O’, and therefore the number of umbilic points in (x,y), will
change by two: a pair will annihilate or be created. (The other interesting event, the transition
from elliptic to hyperbolic via the parabolic umbilic is not apparent in this mapping; it requires a
mapping into the full jet space (£, f,,, fzy) rather than into a projection of it.)
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If the surface can evolve with time under the control of an additional parameter a cusp of g
can be made to pass through O’. In this case three umbilic points become one or vice versa. The
E¢ umbilic reaction is an example of this.

In a general map R%->R?2 evolving with time the singular events are beak-to-beak, lips and
swallowtail (see, e.g. Thorndike, Cooley & Nye 1978). To guide one of these events to occur at
O’ needs two additional controls, making six in all (X, Y, Z plus time plus two). The beak-to-
beak and lips events presumably correspond to the annihilation and creation of two Eg’s; the
swallowtail event presumably corresponds to a higher catastrophe of co-dimension six.
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ction for a different drop.

and (d) the singular se

drop was fixed by a circular hole, 5.5 mm in diamete

gh a hyperbolic umbilic focus,

I'itcure 4. (a)—(¢) Sequence throu

rtically.
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held v
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T'he edge



(f)

F1GUure 8. Light caustics near a parabolic umbilic focus. (a)—(¢) correspond to the left hand half of figure 7. (f) isa
section almost through the singularity itself.
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I'icure 11. Unfoldings of E; with ¢ = 0, ¢ positive and very near the origin. (@), (b) and (¢) are all from the same
drop and show the effect of moving the plane of focus of the microscope towards the drop. Substrate at 30 to
horizontal. Numbers shown refer to diagrams in figure 9.

I'icure 12. Unfoldings of E; with ¢ = ¢ = 0. In (@) to (¢) the plane of focus of the microscope has been moved
towards the drop. (a) d negative; (b) d = 0, singular section; (¢) d positive.




o

(a)

(b) 6

(¢) 10

Ficure 13. Unfoldings of E; with ¢ = 0. The correspondence with the numbered (a, b) sections in figure 9 is shown.



IiIcurEes 14(a)—(e). For description see opposite.
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F1GURE 14. (a)-(b) and (d)—( f) is a focusing sequence moving away {from the drop showing at (4) two simultaneous

parabolic umbilics as part of the non-local unfolding of E;. (¢) is from another drop and shows lips unlolding
from (b).
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Ficure 15. Unfolding of E; with ¢ # 0.

Ficure 17. Unlfoldings of E; disguised by the proximity of D, loci.



